Datasets: Datasets

  1. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials

    2016-11-08 18:47:11 | Contributor(s): Walter Gautschi | doi:10.4231/R7BV7DKM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=0

    https://purr.purdue.edu/publications/2259

  2. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 19:58:17 | Contributor(s): Walter Gautschi | doi:10.4231/R7Q23X6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2263

  3. 32-digit values of the first 100 recurrence coefficients for lower subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:41:11 | Contributor(s): Walter Gautschi | doi:10.4231/R7TT4NXV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2264

  4. 32-digit values of the first 100 recurrence coefficients for lower subrange Jacobi polynomials

    2017-01-10 20:00:51 | Contributor(s): Walter Gautschi | doi:10.4231/R7M906MW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x ) = (1-x)^a*(1+x)^b on [-1,c], c = 0, a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2254

  5. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials

    2016-11-22 13:56:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7GH9FX2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=0

    https://purr.purdue.edu/publications/2257

  6. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent -1/2

    2017-01-10 20:02:55 | Contributor(s): Walter Gautschi | doi:10.4231/R73B5X4W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=-1/4

    https://purr.purdue.edu/publications/2261

  7. 32-digit values of the first 100 recurrence coefficients for symmetric subrange generalized Hermite polynomials with exponent 1/2

    2016-11-10 14:36:46 | Contributor(s): Walter Gautschi | doi:10.4231/R7ZK5DNK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [-c,c], c=1, mu=1/4

    https://purr.purdue.edu/publications/2262

  8. 32-digit values of the first 100 recurrence coefficients for symmetric subrange Jacobi polynomials

    2017-01-10 19:59:31 | Contributor(s): Walter Gautschi | doi:10.4231/R7R20ZB7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [-c,c], c=1/2, a=-1/2, b=1/2

    https://purr.purdue.edu/publications/2251

  9. 32-digit values of the first 100 recurrence coefficients for the 10th-order cardinal B-spline weight function

    2016-11-02 17:47:49 | Contributor(s): Walter Gautschi | doi:10.4231/R70K26JX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=phi_m(x) on [0,m], m=10

    https://purr.purdue.edu/publications/2250

  10. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.001

    2017-01-03 15:19:36 | Contributor(s): Walter Gautschi | doi:10.4231/R7TH8JPW

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.001

    https://purr.purdue.edu/publications/2330

  11. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.005

    2017-01-03 15:18:51 | Contributor(s): Walter Gautschi | doi:10.4231/R7Z899DM

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.005

    https://purr.purdue.edu/publications/2329

  12. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.02

    2017-01-03 15:19:10 | Contributor(s): Walter Gautschi | doi:10.4231/R7319SWH

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.02

    https://purr.purdue.edu/publications/2328

  13. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=.1

    2017-01-03 15:17:56 | Contributor(s): Walter Gautschi | doi:10.4231/R76T0JNX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=.1

    https://purr.purdue.edu/publications/2327

  14. 32-digit values of the first 100 recurrence coefficients for the bimodal weight function with parameter ε=1

    2017-01-03 15:20:03 | Contributor(s): Walter Gautschi | doi:10.4231/R7BK19B6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp[-(x^2-1)^2/(4*ε)] on [-Inf,Inf], ε=1

    https://purr.purdue.edu/publications/2326

  15. 32-digit values of the first 100 recurrence coefficients for the Binet weight function

    2017-10-24 11:59:42 | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30JZ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2533

  16. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein weight function

    2016-11-30 16:48:34 | Contributor(s): Walter Gautschi | doi:10.4231/R7MG7MGF

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=1

    https://purr.purdue.edu/publications/1476

  17. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 3

    2016-11-29 13:20:09 | Contributor(s): Walter Gautschi | doi:10.4231/R7BZ640B

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=3

    https://purr.purdue.edu/publications/1479

  18. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 2

    2016-11-30 16:49:07 | Contributor(s): Walter Gautschi | doi:10.4231/R7GQ6VQ8

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=2

    https://purr.purdue.edu/publications/1478

  19. 32-digit values of the first 100 recurrence coefficients for the Bose-Einstein-type weight function with exponent 4

    2016-11-29 13:20:40 | Contributor(s): Walter Gautschi | doi:10.4231/R7765C8X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[x/(exp(x)-1)]^r on [0,Inf], r=4

    https://purr.purdue.edu/publications/1480

  20. 32-digit values of the first 100 recurrence coefficients for the coerror weight function

    2016-10-26 13:54:02 | Contributor(s): Walter Gautschi | doi:10.4231/R71J97Q6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=erfc(x) on [0,Inf]

    https://purr.purdue.edu/publications/2245

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).