Datasets: Datasets

  1. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters -1/2, 3/2 and exponent 1

    2017-03-10 15:51:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7CV4FQ0

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=-1/2, b=3/2, c=1

    https://purr.purdue.edu/publications/2427

  2. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent -3/4

    2017-03-10 15:49:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7NC5Z6H

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=-3/4

    https://purr.purdue.edu/publications/2429

  3. 32-digit values of the first 100 recurrence coefficients for a generalized Jacobi weight function with Jacobi parameters 3/2, -1/2 and exponent 1

    2017-03-10 15:50:23 | Contributor(s): Walter Gautschi | doi:10.4231/R7HM56FQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=|x|^c*(1-x)^a*(1+x)^b on [-1,1], a=3/2, b=-1/2, c=1

    https://purr.purdue.edu/publications/2426

  4. 32-digit values of the first 100 recurrence coefficients for a half-range Binet-like weight function

    2017-05-24 19:24:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7736NX3

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log(1+exp(-x)) on [0,Inf]

    https://purr.purdue.edu/publications/2522

  5. 32-digit values of the first 100 recurrence coefficients for a half-range hyperexponential weight function

    2017-02-27 13:24:11 | Contributor(s): Walter Gautschi | doi:10.4231/R7JQ0Z1W

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(x)) on [0,Inf]

    https://purr.purdue.edu/publications/2399

  6. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational square-root argument

    2017-03-23 14:59:26 | Contributor(s): Walter Gautschi | doi:10.4231/R7XG9P5S

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x^(1/2))/(1-x^(1/2))) on [0,1]

    https://purr.purdue.edu/publications/2439

  7. 32-digit values of the first 100 recurrence coefficients for a logarithmic weight function with rational argument

    2017-03-23 15:01:49 | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MTX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log((1+x)/(1-x)) on [0,1]

    https://purr.purdue.edu/publications/2436

  8. 32-digit values of the first 100 recurrence coefficients for a modified Bessel weight function

    2016-11-23 19:39:58 | Contributor(s): Walter Gautschi | doi:10.4231/R73F4MKN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=c*K_nu(x) on [0,Inf], c=2cos(nu*pi/2)/pi, nu=1/3

    https://purr.purdue.edu/publications/1475

  9. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/10

    2017-02-27 13:22:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7Z03656

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/10

    https://purr.purdue.edu/publications/2397

  10. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 1/2

    2017-02-27 13:20:19 | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PP7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=1/2

    https://purr.purdue.edu/publications/2396

  11. 32-digit values of the first 100 recurrence coefficients for a Pollaczek-type weight function with parameter 10

    2017-02-27 13:18:48 | Contributor(s): Walter Gautschi | doi:10.4231/R76H4FFD

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-(1-x^2)^(-a)) on [-1,1], a=10

    https://purr.purdue.edu/publications/2395

  12. 32-digit values of the first 100 recurrence coefficients for a square-root-logarithmic weight function

    2016-12-06 19:17:53 | Contributor(s): Walter Gautschi | doi:10.4231/R7NZ85NT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1/x)]^b on [0,1], b=1/2

    https://purr.purdue.edu/publications/2306

  13. 32-digit values of the first 100 recurrence coefficients for a symmetric hyperexponential weight function

    2017-02-14 15:24:26 | Contributor(s): Walter Gautschi | doi:10.4231/R7KP804N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-exp(|x|)) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2400

  14. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a = -1/2 and power b=3

    2017-04-24 12:42:50 | Contributor(s): Walter Gautschi | doi:10.4231/R75X26Z9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=3

    https://purr.purdue.edu/publications/2447

  15. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a =1/2 and power b=3

    2017-04-24 12:39:08 | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZN6

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2446

  16. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=2

    2017-03-23 15:04:58 | Contributor(s): Walter Gautschi | doi:10.4231/R7WM1BDT

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=2

    https://purr.purdue.edu/publications/2442

  17. 32-digit values of the first 100 recurrence coefficients for a weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=2

    2017-04-24 12:51:00 | Contributor(s): Walter Gautschi | doi:10.4231/R7251G6V

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=2

    https://purr.purdue.edu/publications/2445

  18. 32-digit values of the first 100 recurrence coefficients for a weight function with a logarithmic type singularity

    2017-03-22 22:01:23 | Contributor(s): Walter Gautschi | doi:10.4231/R7BR8Q6R

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-x^2) on [-1,1]

    https://purr.purdue.edu/publications/2438

  19. 32-digit values of the first 100 recurrence coefficients for an Airy weight function

    2016-10-19 14:36:51 | Contributor(s): Walter Gautschi | doi:10.4231/R7V122R6

    32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function

    https://purr.purdue.edu/publications/2031

  20. 32-digit values of the first 100 recurrence coefficients for an algebraically/logarithmically singular weight function on (0,1)

    2016-10-12 14:27:45 | Contributor(s): Walter Gautschi | doi:10.4231/R7862DD9

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=(1-x)^{-1/2}x^{1/2}log(1/x) on (0,1)

    https://purr.purdue.edu/publications/1494

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).