Datasets: Datasets

  1. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    2014-04-22 11:31:31 | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ

    32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

    https://purr.purdue.edu/publications/1500

  2. 32-digit values of the first 100 recurrence coefficients, obtained by discretization, for a radiative transfer weight function with parameter c=2/3

    2017-01-13 14:07:19 | Contributor(s): Walter Gautschi | doi:10.4231/R7CF9N35

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2316

  3. 32-digit values of the first 100 recurrence coefficients, obtained from modified moments, for the Laguerre weight function multiplied by a logarithmically singular function

    2016-12-12 16:06:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7M043CX

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

    https://purr.purdue.edu/publications/2301

  4. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=2/3

    2016-12-08 13:26:23 | Contributor(s): Walter Gautschi | doi:10.4231/R7N014H9

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3

    https://purr.purdue.edu/publications/2315

  5. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=16/3

    2017-03-10 15:47:54 | Contributor(s): Walter Gautschi | doi:10.4231/R7PC30CQ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=16/3

    https://purr.purdue.edu/publications/2421

  6. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=4/3

    2017-03-10 15:46:25 | Contributor(s): Walter Gautschi | doi:10.4231/R7XS5SDR

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=4/3

    https://purr.purdue.edu/publications/2418

  7. 32-digit values of the first 100 recurrence coefficients, obtained from moments, for a radiative transfer weight function with parameter c=8/3

    2017-03-10 15:47:00 | Contributor(s): Walter Gautschi | doi:10.4231/R7T43R2M

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=8/3

    https://purr.purdue.edu/publications/2420

  8. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=log(1/x) on [0,1]

    2017-04-20 16:38:39 | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64RH

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a = 0, b = 1

    https://purr.purdue.edu/publications/2268

  9. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(-1/2)*log(1/x) on [0,1]

    2017-04-24 18:00:21 | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7FB6

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2291

  10. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^(1/2)*log(1/x) on [0,1]

    2017-04-24 17:59:43 | Contributor(s): Walter Gautschi | doi:10.4231/R7V9863C

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2290

  11. 32-digit values of the first 200 recurrence coefficients for the weight function w(x)=[log(1/x)]^2 on [0,1]

    2017-08-14 16:36:18 | Contributor(s): Walter Gautschi | doi:10.4231/R7W95769

    32-digit values of the first 200 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=0, b=2

    https://purr.purdue.edu/publications/2269

  12. 32-digit values of the first 62 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-27 13:35:25 | Contributor(s): Walter Gautschi | doi:10.4231/R7W9575V

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2471

  13. 32-digit values of the first 62 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 5

    2017-05-10 19:22:12 | Contributor(s): Walter Gautschi | doi:10.4231/R7FQ9TMB

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=5

    https://purr.purdue.edu/publications/2496

  14. 32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^5*exp(-x)*log(1+1/x) on [1,Inf]

    2017-05-09 13:39:29 | Contributor(s): Walter Gautschi | doi:10.4231/R73R0QWH

    32-digit values of the first 62 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=5

    https://purr.purdue.edu/publications/2462

  15. 32-digit values of the first 63 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-27 13:33:14 | Contributor(s): Walter Gautschi | doi:10.4231/R70Z719D

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2470

  16. 32-digit values of the first 63 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 3

    2017-05-10 19:22:50 | Contributor(s): Walter Gautschi | doi:10.4231/R79Z92XF

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=3

    https://purr.purdue.edu/publications/2495

  17. 32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^3*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-27 13:30:33 | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7S09

    32-digit values of the first 63 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=3

    https://purr.purdue.edu/publications/2463

  18. 32-digit values of the first 64 recurrence coefficients for orthogonal polynomials relative to a weight function on [0,1] containing a logarithmic singularity

    2017-04-27 13:50:12 | Contributor(s): Walter Gautschi | doi:10.4231/R7H1300S

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [0,1]

    https://purr.purdue.edu/publications/2453

  19. 32-digit values of the first 64 recurrence coefficients for the Krylov-Pal'tsev weight function on [0,Inf] with exponent 1

    2017-05-10 19:23:36 | Contributor(s): Walter Gautschi | doi:10.4231/R72J68W1

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [0,Inf], a=1

    https://purr.purdue.edu/publications/2494

  20. 32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x*exp(-x)*log(1+1/x) on [1,Inf]

    2017-04-27 13:39:19 | Contributor(s): Walter Gautschi | doi:10.4231/R7MS3QRV

    32-digit values of the first 64 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1

    https://purr.purdue.edu/publications/2456

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).