## Datasets: Datasets

1. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

2017-01-10 20:07:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

https://purr.purdue.edu/publications/2293

2. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

2016-11-22 13:57:29 | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

https://purr.purdue.edu/publications/2295

3. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

2016-11-15 20:55:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

https://purr.purdue.edu/publications/2273

4. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-11-22 16:58:42 | Contributor(s): Walter Gautschi | doi:10.4231/R7T151N8

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=0

https://purr.purdue.edu/publications/2238

5. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*(1-x^3)^(-1/2) on [0,1]

2016-11-15 21:05:37 | Contributor(s): Walter Gautschi | doi:10.4231/R7ST7MSG

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = -1/2, b = -1/2, c = 3

https://purr.purdue.edu/publications/2274

6. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

2016-12-05 18:01:58 | Contributor(s): Walter Gautschi | doi:10.4231/R7SQ8XDM

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

https://purr.purdue.edu/publications/2302

7. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2017-01-10 20:09:23 | Contributor(s): Walter Gautschi | doi:10.4231/R79P2ZMR

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=-1/2

https://purr.purdue.edu/publications/2298

8. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^2 on [0,1]

2016-10-21 13:28:57 | Contributor(s): Walter Gautschi | doi:10.4231/R72J68T4

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^2 on [0,1], a=-1/2

https://purr.purdue.edu/publications/2236

9. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(-1/2)*[log(1/x)]^3 on [0,1]

2016-11-15 21:06:18 | Contributor(s): Walter Gautschi | doi:10.4231/R7XK8CH6

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=-1/2, b=3

https://purr.purdue.edu/publications/2270

10. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*(1-x^(1/4))^(3/4) on [0,1]

2017-01-10 20:05:20 | Contributor(s): Walter Gautschi | doi:10.4231/R7JD4TR2

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 1/2, b = 3/4, c = 1/4

https://purr.purdue.edu/publications/2272

11. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from modified moments

2016-12-05 18:05:47 | Contributor(s): Walter Gautschi | doi:10.4231/R78P5XHT

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

https://purr.purdue.edu/publications/2304

12. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*(x-1-log(x)) on [0,Inf] obtained from moments

2016-11-30 16:51:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7JH3J5S

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*(x-1-log(x)) on [0,Inf], a=1/2

https://purr.purdue.edu/publications/2240

13. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-.999*x^2)*(1-x^2)]^(-1/2) on [-1,1]

2016-11-23 19:40:22 | Contributor(s): Walter Gautschi | doi:10.4231/R7N877RQ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=.999

https://purr.purdue.edu/publications/2247

14. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[(1-x^2/2)*(1-x^2)]^(-1/2) on [-1,1]

2016-11-22 16:59:25 | Contributor(s): Walter Gautschi | doi:10.4231/R7HH6H1D

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2

https://purr.purdue.edu/publications/2248

15. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials

2017-01-10 20:01:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7736NWN

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=0

https://purr.purdue.edu/publications/2260

16. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent -1/2

2016-11-10 14:35:49 | Contributor(s): Walter Gautschi | doi:10.4231/R7FN145H

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=-1/4

https://purr.purdue.edu/publications/2265

17. 32-digit values of the first 100 recurrence coefficients for upper subrange generalized Hermite polynomials with exponent 1/2

2017-01-10 20:04:09 | Contributor(s): Walter Gautschi | doi:10.4231/R7K935HZ

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [c,Inf], c=1, mu=1/4

https://purr.purdue.edu/publications/2266

18. 32-digit values of the first 100 recurrence coefficients for upper subrange Jacobi polynomials

2016-11-02 18:24:36 | Contributor(s): Walter Gautschi | doi:10.4231/R7VT1Q2N

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*(1+x)^b on [c,1], c=0, a=-1/2, b=1/2

https://purr.purdue.edu/publications/2255

19. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

2014-04-22 11:31:59 | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

https://purr.purdue.edu/publications/1491

20. 32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

2014-04-22 11:31:45 | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

https://purr.purdue.edu/publications/1498

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).