Datasets: Datasets

  1. 32-digit values of the first 100 recurrence coefficients for the square Binet weight function

    2017-08-14 16:43:13 | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D2N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=[log(1-exp(-|x|))]^2 on [-Inf, Inf]

    https://purr.purdue.edu/publications/2593

  2. 32-digit values of the first 100 recurrence coefficients for the squared generalized Binet weight function with parameter 1/2

    2017-10-23 15:56:41 | Contributor(s): Walter Gautschi | doi:10.4231/R7V40SC7

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=log^2(1-a*exp(-|x|)) on [-Inf,Inf], a = 1/2

    https://purr.purdue.edu/publications/2839

  3. 32-digit values of the first 100 recurrence coefficients for the symmetric Laguerre weight function

    2017-02-14 15:21:03 | Contributor(s): Walter Gautschi | doi:10.4231/R7QF8QVK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-|x|) on [-Inf,Inf]

    https://purr.purdue.edu/publications/2398

  4. 32-digit values of the first 100 recurrence coefficients for the Theodorus weight function

    2016-11-29 13:54:00 | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ354Q

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(1/2)/(exp(x)-1) on [0,Inf]

    https://purr.purdue.edu/publications/1472

  5. 32-digit values of the first 100 recurrence coefficients for the upper subrange Binet weight function on [c,Inf], c=1

    2017-10-24 12:00:29 | Contributor(s): Walter Gautschi | doi:10.4231/R7CZ35CV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=-log(1-exp(-x)) on [c,Inf], c=1

    https://purr.purdue.edu/publications/2531

  6. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

    2017-01-13 14:02:56 | Contributor(s): Walter Gautschi | doi:10.4231/R7V9862X

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

    https://purr.purdue.edu/publications/2355

  7. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 1/2

    2017-01-13 14:04:16 | Contributor(s): Walter Gautschi | doi:10.4231/R7KW5D16

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 1/4

    https://purr.purdue.edu/publications/2357

  8. 32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c=-1, with exponent -1/2

    2017-01-13 14:03:38 | Contributor(s): Walter Gautschi | doi:10.4231/R7QN64Q2

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = -1/4

    https://purr.purdue.edu/publications/2356

  9. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=-√(1/2)

    2017-01-13 14:01:57 | Contributor(s): Walter Gautschi | doi:10.4231/R7028PHC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c = -√(1/2)

    https://purr.purdue.edu/publications/2358

  10. 32-digit values of the first 100 recurrence coefficients for the upper subrange Hermite weight function on [c,Inf], c=√1/2

    2017-02-03 20:27:18 | Contributor(s): Walter Gautschi | doi:10.4231/R7NP22FV

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-x^2) on [c,Inf], c=√1/2

    https://purr.purdue.edu/publications/2376

  11. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/logarithmic singularity with exponent a=1/2 and power b=3

    2016-12-08 13:52:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7H70CSK

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3

    https://purr.purdue.edu/publications/2314

  12. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=-1/2 and power b=1

    2017-03-23 15:03:12 | Contributor(s): Walter Gautschi | doi:10.4231/R7P26W4C

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=-1/2, b=1

    https://purr.purdue.edu/publications/2441

  13. 32-digit values of the first 100 recurrence coefficients for the weight function having an algebraic/scaled-logarithmic singularity at 0 with exponent a=1/2 and power b=1

    2017-03-23 15:05:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7RV0KQJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(e/x)]^b on [0,1], a=1/2, b=1

    https://purr.purdue.edu/publications/2443

  14. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*log(1/x) on [0,1]

    2016-11-22 13:59:04 | Contributor(s): Walter Gautschi | doi:10.4231/R7348HBP

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 0

    https://purr.purdue.edu/publications/2296

  15. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(-1/2)*log(1/x) on [0,1]

    2016-11-22 14:05:08 | Contributor(s): Walter Gautschi | doi:10.4231/R7K64G26

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = -1/2

    https://purr.purdue.edu/publications/2294

  16. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(-1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:08:47 | Contributor(s): Walter Gautschi | doi:10.4231/R7TQ5ZHJ

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = -1/2, b = 1/2

    https://purr.purdue.edu/publications/2292

  17. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*log(1/x) on [0,1]

    2016-11-22 14:00:53 | Contributor(s): Walter Gautschi | doi:10.4231/R7ZC80VC

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 0

    https://purr.purdue.edu/publications/2297

  18. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(-1/2)*log(1/x) on [0,1]

    2017-01-10 20:07:52 | Contributor(s): Walter Gautschi | doi:10.4231/R7PZ56TN

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = -1/2

    https://purr.purdue.edu/publications/2293

  19. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^(1/2)*x^(1/2)*log(1/x) on [0,1]

    2016-11-22 13:57:29 | Contributor(s): Walter Gautschi | doi:10.4231/R76W981N

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x)^a*x^b*log(1/x) on [0,1], a = 1/2, b = 1/2

    https://purr.purdue.edu/publications/2295

  20. 32-digit values of the first 100 recurrence coefficients for the weight function w(x)=(1-x^4)^(1/2) on [0,1]

    2016-11-15 20:55:01 | Contributor(s): Walter Gautschi | doi:10.4231/R7DN432K

    32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*(1-x^c)^b on [0,1], a = 0, b = 1/2, c = 4

    https://purr.purdue.edu/publications/2273

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).