Outflow Boundary Condition and Algorithm for Single-Phase Incompressible Flows
2014-06-19 17:45:22 | Contributor(s): Suchuan Dong | doi:10.4231/R7RB72JK
https://purr.purdue.edu/publications/1699
N-1 Span Damage - Supplementary Materials for the Report: Effects of Realistic Heat Straightening Repair on the Properties and Serviceability of Damaged Steel Beam Bridges
2014-05-06 19:43:41 | Contributor(s): Amit H. Varma, Young Moo Sohn | doi:10.4231/D3W66984S
https://purr.purdue.edu/publications/1514
POEXPINT: Polynomials orthogonal with respect to the exponential integral
2014-04-28 14:27:31 | Contributor(s): Walter Gautschi | doi:10.4231/R7X34VD9
https://purr.purdue.edu/publications/1587
CHA: Matlab programs for computing a challenging integral
2014-04-23 08:31:08 | Contributor(s): Walter Gautschi | doi:10.4231/R7QJ7F7V
https://purr.purdue.edu/publications/1563
MCD: Matlab programs for computing the Macdonald function for complex orders
2014-04-23 08:27:25 | Contributor(s): Walter Gautschi | doi:10.4231/R7B8562S
https://purr.purdue.edu/publications/1561
HPGT: High-precision Gauss-Turan quadrature rules
2014-04-23 08:28:16 | Contributor(s): Walter Gautschi | doi:10.4231/R71V5BW8
https://purr.purdue.edu/publications/1580
NEUTRAL: Neutralizing nearby singularities in numerical quadrature
2014-04-23 08:27:11 | Contributor(s): Walter Gautschi | doi:10.4231/R75H7D6P
https://purr.purdue.edu/publications/1579
RMOP: Repeated modifications of orthogonal polynomials
2014-04-23 08:25:49 | Contributor(s): Walter Gautschi | doi:10.4231/R7F18WNB
https://purr.purdue.edu/publications/1577
SRJAC: Sub-range Jacobi polynomials
2014-04-23 08:24:06 | Contributor(s): Walter Gautschi | doi:10.4231/R7JS9NCR
https://purr.purdue.edu/publications/1576
HOGGRL: High-order generalized Gauss-Radau and Gauss-Lobatto Formulae for Jacobi and Laguerre weight functions
2014-04-23 08:28:33 | Contributor(s): Walter Gautschi | doi:10.4231/R7G15XSQ
https://purr.purdue.edu/publications/1574
OCVdM: Optimally conditioned Vandermonde matrices
2014-04-23 08:26:19 | Contributor(s): Walter Gautschi | doi:10.4231/R7TB14TB
https://purr.purdue.edu/publications/1573
LAMBERTW: Matlab programs for evaluating the Lambert W-functions and some of their integrals
2014-04-23 08:27:41 | Contributor(s): Walter Gautschi | doi:10.4231/R7Z31WJP
https://purr.purdue.edu/publications/1572
GQLOG: Matlab routines for computing Gauss Quadrature rules with logarithmic weight functions
2014-04-23 08:28:47 | Contributor(s): Walter Gautschi | doi:10.4231/R72R3PMB
https://purr.purdue.edu/publications/1571
CIZJP: Matlab programs for conjectured inequalities for zeros of Jacobi polynomials
2014-04-23 08:30:53 | Contributor(s): Walter Gautschi | doi:10.4231/R7KS6PH4
https://purr.purdue.edu/publications/1570
BIJ: Matlab programs for testing and extending Bernstein's Inequality for Jacobi polynomials
2014-04-23 08:31:23 | Contributor(s): Walter Gautschi | doi:10.4231/R7V985Z5
https://purr.purdue.edu/publications/1569
OWF: Matlab programs for computing orthogonal polynomials with respect to densely oscillating and exponentially decaying weight functions
2014-04-23 08:26:04 | Contributor(s): Walter Gautschi | doi:10.4231/R7NK3BZ7
https://purr.purdue.edu/publications/1562
NUMINT: Numerical Integration over the square
2014-04-23 08:26:33 | Contributor(s): Walter Gautschi | doi:10.4231/R7PK0D31
https://purr.purdue.edu/publications/1575
32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)
2014-04-22 11:31:45 | Contributor(s): Walter Gautschi | doi:10.4231/R7SF2T39
https://purr.purdue.edu/publications/1498
32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)
2014-04-22 11:31:59 | Contributor(s): Walter Gautschi | doi:10.4231/R70Z715M
https://purr.purdue.edu/publications/1491
32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)
2014-04-22 11:31:31 | Contributor(s): Walter Gautschi | doi:10.4231/R74Q7RWJ
https://purr.purdue.edu/publications/1500