Modeling the Sea Level Changes in Guam

Listed in Datasets

By Avnika Manaktala

Purdue University

This project works on understanding the different statistical models that are available to analyze and predict mean sea level changes in Guam.

Version 1.0 - published on 14 Oct 2019 doi:10.4231/0A0F-7A84 - cite this Content may change until committed to the archive on 14 Nov 2019

Licensed under CC0 1.0 Universal

Sample pic.png

Description

This project was created to act as a final project submission for the EAPS591 course Cybertraining for FAIR Data Science offered by Purdue University for the Fall 2019-2020 semester. The aim of this project is to create a workflow for analysis and modeling experiments to produce Findable, Accessible, Interoperable and Reusable (FAIR) science in hydrological, weather and climate studies.

This project will evaluate the performance of several models so an informed decision can be made on which type of model should be used to further study the mean sea level data. Data has been obtained from the NOAA website and it has been processed to create models using several statistical techniques such as linear, loess and the kNN method of Statistical Machine Learning.

Cite this work

Researchers should cite this work as follows:

Tags

Notes

First version of the project. Analysis is limited to the area of Guam and the files contain the preliminary code to evaluate the different statistical models and understand its applicability on mean sea level data. 

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).