PURR may experience downtime this Thursday (10/17) in the afternoon for scheduled maintenance. We apologize for the inconvenience. close

32-digit values of the first 100 recurrence coefficients for the upper subrange generalized Hermite weight function on [c,Inf], c = -1, with exponent 0

Listed in Datasets

By Walter Gautschi

Purdue University

32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c = -1, μ = 0

Version 1.0 - published on 13 Jan 2017 doi:10.4231/R7V9862X - cite this Archived on 14 Feb 2017

Licensed under Attribution 3.0 Unported

Description

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the weight function w(x)=x^(2*μ)*exp(-x^2) on [c,Inf], c=-1, μ=0, are computed by a moment-based method using the routine sr_upper_subrange_ghermite(dig,32,100,-1,0), where dig=132 has been determined by the routine dig_upper_subrange_ghermite(100,-1,0,124,4,32). The software provided in this dataset allows generating an arbitrary number N of recurrence coefficients for arbitrary real c and μ > -1/2, as well as for different precisions.

Cite this work

Tags

Notes

The dataset consists of one text file and seven Matlab scripts.

The Purdue University Research Repository (PURR) is a university core research facility provided by the Purdue University Libraries, the Office of the Executive Vice President for Research and Partnerships, and Information Technology at Purdue (ITaP).